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1 Introduction

Ce Travail d’Etude et de Recherche a pour objectif d’introduire les méthodes de re-
construction d’images par approche probabiliste. Il se base sur des travaux de physique
statistique et de biologie. A partir d’images, des relations physiques entre les éléments,
représentés par des pixels, sont simulées. Notre travail a donc pour objectif de réutiliser
ces différentes approches et de les appliquer directement aux images, et plus particuliè-
rement à leur reconstruction. Nous nous intéressons aux images bruitées en noir et blanc
ou en nuances de gris.

Il semble assez évident qu’une image ne soit pas seulement constituée de pixels seuls
et indépendants les uns des autres mais aussi de zones délimitées, contrastes et textures.
Par exemple, sur un zèbre, les rayures sont horizontales sur le corps et verticales sur les
pattes. Prenez un zèbre au hasard dans toute la population et vous êtes quasiment sûr
que la probabilité qu’il présente le motif soit égale à 1. Ce phénomène s’explique par la
morphogénèse : la loi veut que le zèbre soit rayé de cette manière là ; mais le sujet de
ce travail n’est pas le zèbre. L’organisation des rayures ou des pixels sur les images d’un
zèbre est donc sous-tendue par des relations de voisinage entre les cellules et les pixels.

Figure 1 – A côté du zèbre sont représentés les résultats de l’étude de Junxiang Yang
et Junseok Kim (2023) qui simule la formation d’un motif zébré non homogène à l’aide
d’un modèle mathématique avec des paramètres spatiaux.

Le sens du formalisme markovien est donc de reprendre les relations spatiales, de
voisinages, entre des zones et pixels. Un poil de zebre au milieu d’une bande noire est
quasi sûrement noir (sauf s’il est vieux, peut-être). La probabilité de l’état d’un site
dépend donc du voisinage de ce même site. Pour modéliser ces relations spatiales, nous
nous plaçons dans le cadre mathématique des champs de Markov. Une image est une
modélisation d’un champ de Markov.

Toutefois, exploiter ces champs pour des tâches de traitement d’images, ici leur recons-
truction, demande d’estimer des configurations optimales dans des espaces de grandes di-
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mensions. C’est là l’intérêt des méthodes de Monte-Carlo par chaînes de Markov (MCMC).
En effet, ne connaissant pas la loi d’un certain champ de Markov, on peut la simuler par
l’intermédiaire des méthodes de Monte-Carlo. Mais le champ (l’image) ayant un grand
nombre de configurations possibles, on ne peut appliquer la démarche de Monte-Carlo
classique qui est de simuler un grand nombre de fois le champ et d’obtenir l’espérance du
champ de Markov par la moyenne des simulations, et qui utilise donc la loi des grands
nombres. Afin d’illustrer le problème, on peut prendre l’exemple d’un dé à 6 faces. Si on ef-
fectue 1000 lancers, on regarde le nombre de fois que l’on a obtenu chaque face afin d’avoir
une idée de la loi de probabilité du dé. Cette démarche fonctionne bien en principe puis-
qu’il n’y a que six modalités possibles. Or, si nous avons par exemple 102564785 modalités,
on ne peut plus procéder de la sorte, puisque pour avoir un grand nombre d’occurrences
de chaque modalité, il faudrait un nombre de simulations "démentiel". Aussi, pour pallier
cette limite de la méthode de Monte-Carlo classique, on introduit des algorithmes permet-
tant de simuler un champ de Markov qui va converger vers la loi de probabilité qui nous
intéresse (cette convergence en loi est associée à la loi faible des grands nombres). Nous
nous intéressons à deux algorithmes : l’algorithme de Gibbs et l’algorithme de Metropolis-
Hastings. On doit beaucoup du cadre théorique des méthodes de Monte-Carlo à Nicholas
Metropolis, mais il écrit aussi les prémices de l’algorithme à son nom que nous utilisons
dans la suite de ce travail, ainsi que la méthode du recuit-simulé. Grâce à ses travaux, on
peut donc estimer l’image que l’on souhaite reconstruire.

Finalement, nous comparons les différents algorithmes, méthodes et estimateurs. À
travers l’analyse des différents estimateurs, des modèles d’attache aux données et des
stratégies d’optimisation, nous discuterons des avantages et des limites des approches par
méthodes de Monte-Carlo dans le domaine du traitement d’images.

2 Modélisation probabiliste de l’image

2.1 Définition d’une image

On définit l’image comme un ensemble discret de sites si. Ainsi, S est un ensemble
fini de sites qui représentent les pixels de l’image, et les descripteurs des états de ces sites
représentent la couleur des pixels, à valeur dans E, l’espace des états de la chaîne de Mar-
kov. On peut construire un système de voisinage des sites, pour générer des intéractions
locales.

2.2 Voisinages et cliques

On définit comme voisinage d’un site s ∈ S, l’ensemble Vs = {t ∈ S} défini par :

Vs =

{
s /∈ Vs

t ∈ Vs ⇒ s ∈ Vt

Une clique c est un sous-ensemble de sites voisins entre eux. En théorie des graphes,
une clique est un sous-graphe complet, dont les sommets sont deux a deux adjacents. Le
système de cliques dépend du type de voisinage utilisé (4-connexité, 8-connexité), c’est-
à-dire du graphe dont on va extraire les cliques. Une clique est d’ordre i si elle contient i
éléments adjacents. On note finalement C l’ensemble des cliques de l’images. On retrouve
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en dessous de cette explication les ensembles de cliques possibles selon les systèmes de
voisinages :

4-connexité C1 C2 Réalisations possibles

8-connexité C1 C2 C3 C4

On comprend qu’à partir du système de voisinage, les interactions spatiales entre les
sites sont formalisées par les cliques. Par exemple, dans le cadre de la 4-connexité, on peut
en sortir des réalisations de voisinages possibles au site sij.

∼

Figure 2 – Voisinages possibles au site sij

∼ ∼ ∼

Figure 3 – Ensemble des voisinages à 1 pixel possibles au site sij

On définit à la suite des cliques les potentiels associés. On note Uc le potentiel de la
clique c et dont la valeur dépend du niveau de gris des sites de la clique. Le potentiel global
de l’image, aussi appelé énergie globale de l’image, est donc la somme des potentiels de
toutes les cliques qui la composent :

U =
∑
c∈C

Uc

Enfin, l’énergie en un site s (énergie locale) correspond à l’énergie des cliques auxquels le
site s appartient :

Us =
∑

c∈C/s∈c

Uc
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3 Champs de Markov et de Gibbs

3.1 Approche probabiliste de l’image

Nous avons besoin par la suite de formaliser et de définir rigoureusement les variables
utilisées pour nous placer dans le cadre des champs de Markov.

A partir de s un site de l’image S, on définit Xs une variable aléatoire a valeur dans
E. Le descripteur xs, le niveau de gris en s, est une réalisation de la variable aléatoire
Xs. On peut alors definir X = (Xs, Xt, ...) le champ de Markov a valeur dans Ω = E|S|,
où |S| ou Card(S) est le nombre de sites qui composent l’image. Par exemple, pour une
image à 4 pixels en noir et blanc, on à |S| = 4 et E = {0, 1}, et au final on a Ω = E4 et
Card(Ω) = 24 = 16. Il y a donc 16 images possibles issues de ces 2 conditions.

Dans ce cadre, on considère l’image simplement comme une de ses réalisations x du
champs X. Ainsi, la probabilité globale de l’image x est donnée par P (X = x), et les
probabilités conditionnelles locales d’une valeur (d’un état) en un site s permettent de
mesurer le lien statistique entre un descripteur xs et le reste de l’image. L’hypothèse
markovienne permet d’évaluer ces quantités (probabilités).

3.2 Définition d’un champ de Markov

Considérons xs la valeur du descripteur du site s et xs = (xt)t̸=s la configuration de
l’image excepté le site s. La définition d’un champ de Markov est donc donnée par la
relation suivante :

P (Xi = xi/x
i) = P (Xi = xi/xj, j ∈ Vi)

que l’on peut traduire par :

X est un champ de Markov si et seulement si la probabilité condition-
nelle locale en un site n est fonction uniquement de la configuration du
voisinage du site considéré.

3.3 Mesure et champ de Gibbs

Nous cherchons à introduire dans les champs markoviens des propriétés énergétiques
pour accéder à l’expression de probabilités conditionelles locales, c’est-à-dire la probabilité
d’un changement d’état au regard du voisinage du site.

Nous utilisons donc la mesure de Gibbs de fonction d’énergie définie comme suit. Soit
U : Ω → R et la probabilité P définie sur Ω par :

P (X = x) =
1

Z
exp(−U(x))

avec
U(x) =

∑
c∈C

Uc(x)

la somme des énergies des cliques de C associées au système de voisinage V . On note
par ailleurs Z =

∑
x∈Ω exp(−U(x)) la constante de normalisation, appelée fonction de

partition de Gibbs. On comprend bien que Ω = ECard(S est un ensemble de très grande
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taille. Par exemple, pour une image carrée de largeur 30 pixels en noir et blanc, on a
donc Card(S) = 30 × 30 = 900, aussi Card(Ω) = 2900. On a ainsi environ 8, 45.10270

configurations possibles d’images. On peut donc remarquer que la fonction de partition
de Gibbs est impossible à calculer, dans la suite nous verrons comment palier ce problème
pour l’échantillonage du champ de Gibbs.

Le champ de Gibbs est le champ aléatoire X dont la probabilité est la mesure de Gibbs
associée au systeme de voisinage V :

P (X = x) =
1

Z
exp(−U(x)) =

1

Z
exp(−

∑
c∈C

Uc(x))

On remarque que la configuration d’énergie minimale du champs de Gibbs, et donc celle
qui maximise sa probabilité, est grande.

3.4 Théorème d’Hammersley-Clifford

Soient S un ensemble fini ou dénombrable, V un système de voisinage sur S et E un
espace d’état discret. Soit (X) un processus aléatoire à valeurs dans Ω = ECard(S). Alors :

X est un champ de Markov relativement a V et P (X = x) > 0 ∀x ∈ Ω
⇔

X est un champs de Gibbs de potentiel associé à V

Ce théorème nous permet donc de passer d’un champ de Markov, avec une énergie globale
difficile à calculer, à un champ de Gibbs, qui a pour propriété de décomposer l’énergie
globale en somme d’énergies locales.

On obtient alors la probabilité conditionnelle locale suivante :

P (Xs = xs|Xr = xr, r ̸= s) =
exp−Us(Xs = xs|Xr = xr, r ∈ Vs)∑
λ∈E exp−Us(Xs = λ|Xr = xr, r ∈ Vs)

où Us(Xs = xs|Xr = xr, r ∈ Vs) est l’énergie locale du site s, qui ne fait intervenir
que ses sites voisins. On peut donc transformer la fonction de partition de Gibbs : elle ne
repose maintenant que sur l’ensemble des états possibles. Pour une image en noir et blanc,
Card(E) = 2, nous n’avons plus que deux termes à calculer, ce qui permet d’augmenter
drastiquement la rapidité des algorithmes que nous décrivons dans la section suivante.

4 Méthodes de Monte-Carlo : Échantillonnage et réa-
lisations de champs de Markov

Dans cette partie nous discutons des algorithmes développés pour simuler des réalisa-
tions d’un champ de Markov assimilé à un champ de Gibbs.

Les méthodes de Monte-Carlo nous permettent de faire converger le champ vers la loi
de Gibbs (mesure de Gibbs) de ce même champ, celle qui minimise l’énergie globale du
champ. On parle alors de convergence en loi (loi faible des grands nombres), et la mesure
de Gibbs est considérée comme la probabilité invariante du champ :

Xn
L−→ X
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4.1 Échantillonneur de Gibbs

L’échantillonneur de Gibbs est une méthode de Monte-Carlo par chaînes de Markov
proposée par Geman et Geman en 1984. Elle repose sur la construction itérative d’images,
en générant progressivement des configurations qui suivent une distribution de Gibbs. On
considère que l’algorithme converge après un certain nombre d’itérations, et les images
générées sont alors des réalisations de la loi de Gibbs. À chaque site sij de l’image, on
associe un voisinage Vs.

À l’itération n+ 1, à partir de l’image de l’itération n, l’algorithme procède par mise
à jour successive (relaxation) :

1. On choisit un pixel sij aléatoirement dans l’image.
2. Pour chaque état λi ∈ E possible, on calcule l’énergie locale :

Us(xs = λi | Vs)

3. On construit alors le vecteur des énergies locales :

U(xs) =


Us(xs = λ1 | Vs)
Us(xs = λ2 | Vs)

...
Us(xs = λk | Vs)


4. On produit alors, à partir de cette mesure, une réalisation de la loi de Gibbs :

µ(λi) =
1

Z
exp (−Us(xs = λi | Vs)) avec Z =

∑
λ∈E

exp (−Us(xs = λ | Vs))

la probabilité que le site sij prenne la valeur λi à l’itération n + 1 est donc donnée
par le i-ème élément du vecteur de la loi de Gibbs.

5. On tire dans E un état λi selon la loi µ, et on remplace l’état du site sij.
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Figure 4 – Représentation d’un calcul d’énergie locale et de mesure de Gibbs dans le
cadre d’un système de voisinage au site s et en 4-connexité.

4.2 Algorithme de Metropolis-Hastings

L’algorithme de Métropolis-Hastings, mis au point par W. K. Hastings en 1970, est
issu de la physique statistique et est une généralisation de l’algorithme de Metropolis
(Metropolis et al., 1953). Il est similaire à l’échantillonneur de Gibbs dans le sens où c’est
aussi une méthode de Monte-Carlo par chaînes de Markov permettant une construction
itérative d’images qui sont, après un assez grand nombre d’itérations, des réalisations
d’une loi de champs de Markov. Mais il diffère de l’échantillonneur de Gibbs par le fait
qu’il n’accepte pas toutes les transitions : il y a une condition aux changements des états.

En effet, l’algorithme repose sur les étapes suivantes :

1. On choisit aléatoirement un pixel sij dans l’image.
2. On récupère l’état du site sij, noté λs et à valeurs dans E, puis on calcule l’énergie

locale du site :
Us(xs = λs | Vs)

3. On tire un état λr ∈ E selon la loi uniforme U sur E.
4. On calcule l’énergie locale du nouveau site rij associée à ce nouvel état :

Ur(xs = λr | Vr = Vs)

5. On calcule la variation des énergies locales :

∆U = Ur(xs = λr | Vr)− Us(xs = λs | Vs)

6. Le changement d’état du site sij par λr est accepté si ∆U < 0

9
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7. Sinon, on tire une probabilité p (tirage aléatoire selon une loi uniforme sur [0, 1],
permet des tirages équiprobables), et si p < exp(−∆U), on accepte le changement
d’état du site sij par λr.

Contrairement à l’échantillonneur de Gibbs, ici seules les transitions qui diminuent
l’énergie ou qui satisfont une certaine probabilité d’acceptation sont retenues.

4.3 Algorithme du recuit simulé

L’algorithme du recuit simulé est dédié à la recherche des configurations les plus pro-
bables, qui sont obtenues à des états d’énergie minimale. Les images obtenues par recuit
simulé correspondent en théorie aux minima globaux d’énergie et sont donc uniques. On
introduit pour cela un paramètre de température T > 0.

En particulier, lorsque T est élevée, la recherche est exploratoire c’est-à-dire que les
changements d’états sont acceptés mêmes s’ils sont sous optimaux. Lorsque T → 0, l’al-
gorithme se rapporche des minima globaux de l’énergie U .

Le recuit simulé prend donc en compte la température T , qui est introduite comme
une suite appliquée à un processus. On choisit une température initiale T0 plutôt grande
puis, à chaque itération, la température diminue de façon lente avec :

Tn >
c

log(2 + n)

où n est le nombre maximal d’itérations et c est une constante dépendant de la varia-
tion énergétique globale maximale sur l’espace des configurations (en pratique, on prend
c = T0). Appliquer un recuit simulé aux algorithmes de Gibbs ou de Metropolis-Hastings
(le recuit simulé étant un optimisateur, il doit être associé à un algorithme) influence leur
dernière étape de traitement. On accepte le changement de l’état du site sij :

— pour l’algorithme de Gibbs : selon la réalisation de la loi de Gibbs pour U(x)
T

sachant
que :

PT (X = x) =
1

Z(T )
exp

−U(x)

T

avec Z(T ) =
∑

x∈Ω exp (−U(x))
T

.

— pour l’algorithme de Metropolis-Hastings : si ∆U
T

< 0, sinon si p < exp
(
−∆U

T

)
où p

est une probabilité tirée sur une loi uniforme U .

Autrement dit, plus la température T diminue, plus les estimateurs seront forcés à
sélectionner l’énergie la plus basse, puisque leur probabilité conditionnelle sera plus élevée
par rapport aux configurations d’énergie plus élevée. L’algorithme s’arrête lorsque les
changements des états des sites sont faibles (En pratique, l’algorithme s’arrête au bout
d’un certain nombre d’itérations).

Contrairement aux autres algorithmes et modèles, le recuit simulé est le seul à avoir
une convergence presque sure (loi forte des grands nombres) vers un minimum global,
expliquant pourquoi on a de meilleurs résultats comme le montre les réalisations dans la
section suivante.
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4.3.1 Applications et Taux de restauration

On introduit avant de commencer à faire une application une mesure de taux de restau-
ration, soit le taux de bonne restitution d’un pixel de l’image de départ par l’algorithme
utilisé :

ε =
1

Card(S)

∑
s∈S

1{Ys=Xs}

Nous avons codé ce taux de restauration ε en language Python comme suit :

1 def taux_restauration(img_originale , img_restauree):
2 pixels_corrects = np.sum(img_originale == img_restauree)
3 total_pixels = img_originale.size
4 taux = (pixels_corrects / total_pixels) * 100
5 return taux

Figure 5 – Illustration d’une configuration comparant différentes simulations selon le
modèle d’Ising avec et sans recuit, bruit : (p = 0.3), nombre d’itérations : (iter = 105),
valeur des paramètres : (β = 1)

11
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Figure 6 – Illustration d’une configuration comparant différentes simulations selon le
modèle d’Ising avec et sans recuit, bruit : (p = 0.3), nombre d’itérations : (iter = 105),
valeur des paramètres : (β = 4)

4.4 Algorithme des modes conditionnels itérés (ICM)

L’algorithme du recuit simulé est très coûteux en temps de calcul car il requiert la
génération d’un grand nombre de configurations au fil des itérations. Aussi l’algorithme des
modes conditionnels itérés (Iterated Conditional Mode, ICM) est utilisé car beaucoup plus
rapide (caractère déterministe de l’algorithme) mais il n’y a pas de preuve de convergence
vers un minimum global d’énergie comme pour le recuit simulé.

L’ICM est un algorithme itératif qui modifie le descripteur xs de chaques sites s de
l’image de manière déterministe. Il part d’une configuration initiale et construit une suite
d’images qui converge vers une approximation du maximum a posteriori x̂. En pratique,
chaque descripteur est mis à jour avec la configuration qui permet la diminution d’énergie
la plus importante. Aussi, l’ICM est plus rapide car on se contente de prendre la variation
d’énergie locale minimale.

Aussi, à l’itération n+1, soit pour la mise à jour n de l’image, on parcourt tous les
sites s de l’image et :

— on calcule les probabilités conditionnelles locales pour chaque état λ ∈ E du site s,
soient P (Xs = λ | x̂r(n), r ∈ Vs). En pratique, on calcule les variations d’énergies
locales : ∆U = Us(λ | Vs)− Us(xs(n) | Vs)

— on met à jour chacun des descripteurs x̂ par l’état λ maximisant la probabilité
conditionnelle locale :

x̂s(n+ 1) = Argmaxλ∈EP (Xs = λ | x̂r(n), r ∈ Vs)

En pratique, on minimise la variation d’énergie locale (le descripteur xs est mis à
jour en prenant l’état λ si ∆U < 0).

L’algorithme s’arrête lorsque les changements des états des sites sont faibles.

Il est possible de montrer que l’énergie globale de la configuration x̂ diminue et converge
vers un minimum d’énergie local (et non global comme pour le recuit simulé de part le
paramètre de température), l’algorithme de l’ICM dépendant fortement de la configuration
initiale.
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5 Application à la restauration d’images

5.1 Modèle d’Ising

Le modèle d’Ising est un modèle de physique statistique : il simule le spin (deux états)
de particules dans un espace à deux dimensions, de température β et leurs interactions
locales. L’espace des états est donc E={−1, 1} (espace binaire). Le modèle utilise les
images comme un milieu à deux dimensions où chaque site correspond à une particule et
la couleur (noir ou blanc) à son état. On utilise ainsi ce modèle pour la reconstruction
d’images en noir et blanc.

Figure 7 – Modèle d’Ising à 4 particules. Les flèches représentent le spin des atomes, β
est la température du milieu et

−→
B le champ magnétique extérieur appliqué au modèle.

On donne à droite la traduction en image dans le modèle.

Les potentiels des cliques d’ordre 2 sont définis de la manière suivante :

Uc=(s,t)(xs, xt) = −βxsxt =

{
−β si xs = xt

β sinon

où β est la constante de couplage entre sites voisins. Les potentiels des cliques d’ordre 1
(un seul site) sont de la forme −βxs.

L’énergie globale s’écrit alors :

U(x) = −
∑

c=(s,t)∈C

βxsxt −
∑
s∈S

Bxs

où B représente un champ magnétique externe.

La valeur de β, la température du milieu modélisé, influence l’évolution du modèle.
Si β est positif, les configurations les plus probables, donc celles d’énergie minimale, sont
celles pour lesquelles les sites ont le même état ; ceci correspond à des spins de même
signe soit un ferromagnétisme (capacité de certains corps à orienter tous leur spins dans
un sens). Si β est négatif, sont privilégiées les configurations où les sites sont d’états
opposés, soient les spins de signes opposés (anti-ferromagnétisme).

13



TER

En nous replaçant dans le cadre markovien, au temps n+1 on établit les probabilités de
transition du descripteur du site sij par p(n)i,j = P (X

(s)
n+1 = j | V(s)

n ∩Xn = i), ∀(i, j) ∈ E2.
On obtient la matrice de transition de la chaîne de Markov, mise à jour a chaque itération
de l’algorithme choisi.

-1 1

p
(n)
−1,1

p
(n)
1,−1

p
(n)
−1,−1 p

(n)
1,1 M (n) =

(
p−1,−1 p−1,1

p1,−1 p1,1

)

Figure 8 – Chaîne de Markov et matrice de transition du site s au temps n+1

Les figures suivantes montrent des réalisations du modèle d’Ising pour différents pa-
ramètres (différentes valeurs de β et donc une régularisation plus ou moins importante)
avec les algorithmes de Gibbs et de Metropolis-Hastings.

Figure 9 – Illustration d’une configuration simulée selon un modèle d’Ising, bruit :
(p = 0.3), nombre d’itérations : (iter = 105), valeur des paramètres : (β = 1)
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Figure 10 – Illustration d’une configuration simulée selon un modèle d’Ising, bruit :
(p = 0.3), nombre d’itérations : (iter = 105), valeur des paramètres : (β = 2)

Figure 11 – Illustration d’une configuration simulée selon un modèle d’Ising, bruit :
(p = 0.3), nombre d’itérations : (iter = 105), valeur des paramètres : (β = 4)
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5.2 Modèle de Potts

Le modèle de Potts ou modèle cellulaire de Potts est un modèle d’interaction et de
comportement de cellules dans un environnement en 2 dimensions. Le modèle de Potts est
une généralisation du modèle d’Ising vers un espace d’états de taille supérieure à 2, on a
donc E = {0, 1, . . . , N} un espace discret de taille N+1. Le modèle utilise l’image comme
un milieu de développement des cellules, la couleur donne le type de cellules présentes
dans une colonie.

Les potentiels ne sont cette fois-ci définis que pour des cliques d’ordre 2 :

Uc=(s,t)(xs, xt) = −βxsxt =

{
−β si xs = xt

β sinon

Ici β représente l’étalement du groupe de cellule sur le milieu. Si β est positif, les
configurations les plus probables sont celles pour lesquelles les sites voisins ont les mêmes
descripteurs (par exemple le même niveau de gris), ce qui en traitement d’images donne
des réalisations constituées de larges zones homogènes dont la taille varie selon β.

Comme pour le modèle d’Ising, en nous replaçant dans le cadre markovien, au temps
n+1 on établit les probabilités de transition du descripteur du site sij par p(n)i,j = P (X

(s)
n+1 =

j | V(s)
n ∩Xn = i), ∀(i, j) ∈ E2. On obtient la matrice de transition de la chaîne de Markov,

mise à jour à chaque itération de l’algorithme choisi.
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M (n) =


p
(n)
0,0 p

(n)
0,1 p

(n)
0,2 · · · p

(n)
0,N

p
(n)
1,0 p

(n)
1,1 p

(n)
1,2 · · · p

(n)
1,N

p
(n)
2,0 p

(n)
2,1 p

(n)
2,2 · · · p

(n)
2,N

...
...

... . . . ...
p
(n)
N,0 p

(n)
N,1 p

(n)
N,2 · · · p

(n)
N,N


Figure 12 – Chaîne de Markov et matrice de transition du site s au temps n+1

Il est possible de parfaire le modèle de Potts en utilisant des valeurs de β différentes
en fonction des directions des cliques (par exemple, une exploration verticale/horizontale
en 4-connexité) et ainsi privilégier certaines directions. Les figures suivantes montrent des
réalisations du modèle de Potts pour différents paramètres (différentes valeurs de β et
donc une régularisation plus ou moins importante) avec les algorithmes de Gibbs et de
Metropolis-Hastings.

Figure 13 – Illustration d’une configuration comparant différentes simulations selon
le modèle de Potts, bruit : (p = 0.3), nombre d’itérations : (iter = 105), valeur des
paramètres : (β = 1)
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Figure 14 – Illustration d’une configuration comparant différentes simulations selon
le modèle de Potts, bruit : (p = 0.3), nombre d’itérations : (iter = 105), valeur des
paramètres : (β = 4)

5.3 Modèle Markovien Gaussien

Le modèle markovien gaussien convient à des images en deux dimensions et a pour
espace d’états E = {0, 1, . . . , N}, discret et de taille N . Plus particulièrement, dans le
cas du traitement d’images, ce modèle est utilisé pour les images en niveaux de gris où
E = {0, . . . , 255}, et favorise les niveaux de gris proches pour des sites voisins. On parle
de modèle markovien gaussien car l’image comporte un bruit gaussien, dont la densité de
probabilité est une distribution gaussienne (suit une loi normale).

Les potentiels des cliques d’ordre 2 sont définis de la manière suivante :

U(x) = β
∑

c=(s,t)

(xs − xt)
2 − α

∑
s∈S

(xs − µs)
2

où µs est une moyenne de niveaux de gris attendue pour le site s lorsque les descripteurs
xs sont les niveaux de gris. Le premier terme est un terme de régularisation, le second terme
correspond à l’attache aux données. Si β est positif, les configurations qui sont favorisées
sont celles où les différences entre les descripteurs des sites s et t, soit les niveaux de gris
entre les sites voisins, sont faibles. Le rapport α

β
pondère les influences respectives des

termes de régularisation et d’attache aux données, les valeurs absolues de ces paramètres
décrivant le caractère équiréparti ou localisé de la distribution.

6 Estimateurs dans un cadre Markovien

Dans le cadre de la restauration d’images dégradées (par exemple bruitées), une ap-
proche probabiliste permet d’estimer l’image idéale à partir de l’image observée. On mo-
délise l’image parfaite inconnue X comme un champ de Markov (MRF), et l’image bruitée
Y comme une observation de ce champ à travers un processus bruité. L’objectif est de
retrouver une configuration x̂ du champ X qui soit la plus plausible compte tenu de
l’observation y. Comme nous sommes dans un cadre probabiliste, on peut chercher la
configuration x̂ qui maximise la probabilité P (X = x | Y = y), et qui se note :
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P (X = x | Y = y) =
P (Y = y | X = x) · P (X = x)

P (Y = y)

6.1 Estimateur MAP pour la restauration d’images

6.1.1 Définition de l’estimateur MAP

L’estimateur MAP (Maximum A Posteriori) consiste à rechercher la configuration la
plus probable de l’image idéale x, compte tenu de l’image bruitée observée y. Il s’agit
donc de maximiser la probabilité conditionnelle suivante :

x̂MAP = argmax
x

P (X = x | Y = y)

En appliquant la règle de Bayes, cette probabilité peut être réécrite comme :

P (X = x | Y = y) =
P (Y = y | X = x) · P (X = x)

P (Y = y)

Le dénominateur P (Y = y) étant constant (indépendant de x), on peut se contenter de
maximiser le numérateur :

x̂MAP = argmax
x

P (Y = y | X = x) · P (X = x)

Cette expression reflète un compromis entre deux aspects fondamentaux :

— L’attache aux données P (Y = y | X = x) : elle mesure à quel point une image can-
didate x est compatible avec les observations bruitées y. Sous l’hypothèse (fréquente
mais simplificatrice) d’indépendance des pixels, c’est à dire à quel point x aurait pu
produire y, selon le modèle de bruit.

— La régularisation P (X = x) : elle reflète les connaissances a priori sur les images
«plausibles». Ce terme est modélisé par un champ de Markov (Ising ou Potts par
exemple) et favorise les états où les pixels voisins ont des états similaires.

6.1.2 Formulation énergétique

Comme travailler directement avec les probabilités peut s’avérer difficile, On préfère
reformuler le problème en termes d’énergie, en prenant le négatif du logarithme de la
densité de probabilité (ce qui revient à minimiser une « énergie » plutôt qu’à maximiser
une probabilité) :

U(x | y) = − lnP (Y = y | X = x)− lnP (X = x)

L’estimateur MAP devient alors :

x̂MAP = argmin
x

U(x | y)

Cette énergie U(x | y) se décompose en deux termes :

U(x | y) =
∑
s∈S

(xs − ys)
2

2σ2︸ ︷︷ ︸
Attache aux données

+ β
∑

{s,t}∈C2

ϕ(xs, xt)︸ ︷︷ ︸
Régularisation
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Plus précisément :

— Le premier terme mesure l’écart entre chaque pixel xs de l’image reconstruite et l’ob-
servation bruitée ys. Il repose sur l’hypothèse que le bruit est gaussien, de moyenne
nulle, de variance σ2 et de densité :

f(xs) =
1√
2πσ2

exp

(
−(xs − ys)

2

2σ2

)
Aussi faisons-nous une approximation de l’image par une loi normale discrétisée.
Comme la variance σ2 intervient au dénominateur, cela signifie que plus elle est
petite, plus l’attache aux données est forte, donc on considère que l’image restaurée
xs colle fortement à l’image bruitée ys. Tandis qu’avec une plus grande valeur de
σ2, on donne plus d’importance à la régularité.

— Le second terme modélise les interactions locales entre pixels voisins. Il favorise
des images dans lesquelles les pixels voisins ont des valeurs similaires. Ce terme est
dérivé d’un champ de Markov (et plus précisément d’un champ de Gibbs), avec des
cliques d’ordre 2 :

P (X = x) ∝ exp

−β
∑

{s,t}∈C2

ϕ(xs, xt)


Le choix de la fonction ϕ définit comment les voisins du modèle interagissent les uns
avec les autres en fonction de l’état de leur pixels. Et dépend de l’application : par
exemple, ϕ(xs, xt) = (xs − xt)

2 favorise la continuité, tandis qu’un modèle de Potts
(ce que l’on utilise dans nots estimateurs) pénalise uniquement les discontinuités
(i.e. ϕ(xs, xt) = 1xs ̸=xt).

Le paramètre β > 0 est un coefficient de pondération qui équilibre la fidélité aux données et
la régularité. Une petite valeur de β laisse plus de liberté à l’image pour suivre les données,
au risque de conserver le bruit. Une plus grande valeur de β force une image plus lisse,
au risque de lisser les détails fins. De plus, choisir un β > 0 pénalise les différences entre
pixels (c’est ce que l’on veut faire), tandis qu’une valeur négative de β aura tendance
à faire l’inverse, c’est-à-dire récompenser les différences, ce qui crée des motifs parfois
intéressants (mais qui n’ont plus rien à voir avec l’image de base).

Figure 15 – Illustration d’une configuration comparant différentes valeurs de beta pour
un estimateur MAP, bruit : (p = 0.3), nombre d’itérations : (iter = 105) et nombre
d’états : (nbetats = 3)
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On voit bien que paramétrer une grande valeur de β a eu pour conséquence de favoriser
la régularisation, donc pour 100 000 itérations on obtient une image presque uniforme qui
ressemble à l’image initiale. Les carrés gris on été bien délimités par l’estimateur avec une
petite valeur de β, mais il reste un nombre non négligeable de pixels blancs qui n’ont pas
été changés. L’algorithme fait confiance au bruit (il ignore presque le membre de droite),
il préfère une solution fidèle à l’image bruitée, même si elle est incohérente spatiallement.
Le résultat d’un estimateur est aussi visualisable lorsqu’on lui donne pour mission de créer
le plus de différences possibles entre les pixels.

6.1.3 Intérêt de l’estimateur MAP

L’estimateur MAP est particulièrement adapté aux problèmes de restauration d’images
car :

— Il offre une solution globale cohérente, en prenant en compte à la fois les données et
des contraintes de régularité.

— Il est robuste au bruit, notamment dans les situations où les observations sont
fortement dégradées.

— Il se prête bien à des techniques d’optimisation efficaces, qu’elles soient stochastiques
(comme le recuit simulé) ou déterministes (comme l’algorithme ICM ou les méthodes
de gradient).

Toutefois, comme la fonction d’énergie U(x | y) est généralement non convexe, la recherche
du minimum global est complexe. Des algorithmes comme le recuit simulé permettent de
s’approcher de ce minimum en explorant intelligemment l’espace des solutions, tandis que
des méthodes plus rapides comme l’agorithme ICM convergent vers un minimum local, ce
qui peut suffire dans certains cas.

Figure 16 – Rappel : Une fonction convexe admet un unique minimum, il est donc global.
Pour une fonction non convexe il est plus délicat de déterminer le minimum global, il faut
éviter les minima locaux

6.1.4 Application de l’estimateur MAP

Nous présentons ici deux façons de simuler un estimateur MAP : une approche déter-
ministe par descente locale (type ICM), et une approche stochastique par recuit simulé.
Ils recherchent tous deux la configuration la plus probable (la moins énergétique).
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L’algorithme ICM met à jour les pixels un par un. Dans notre cas, à chaque itération,
un pixel sij est sélectionné aléatoirement (légère variation de la version canonique). Le
reste de l’algorithme reste le même.

Le recuit simulé introduit une température décroissante dans le processus, ce qui per-
met d’accepter temporairement des solutions sous-optimales pour mieux explorer l’espace
des configurations.

Figure 17 – Illustration de deux méthodes d’optimisation pour l’estimateur MAP, bruit :
(p = 0.3), nombre d’itérations : (iter = 105), nombre d’états : (nbetats = 3), sigma :
(σ2 = 2), beta : (β = 0.3)

Figure 18 – On observe une évolution similaire de l’énergie pour les simulations par ICM
et recuit simulé.

6.2 Estimateur MPM pour la restauration d’images

6.2.1 Définition de l’estimateur MPM

L’estimateur MPM (Maximum Posterior Marginal) adopte une stratégie locale : au
lieu de chercher l’image entière la plus probable (comme le fait l’estimateur MAP), il
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cherche, pour chaque pixel s, la valeur de xs la plus probable compte tenu de l’image
observée y. Cela revient à maximiser la marginale de la loi a posteriori :

x̂MPM(s) = argmax
xs

P (Xs = xs | Y = y)

Cet estimateur vise à minimiser le nombre moyen de pixels mal restaurés, ce qui le rend
particulièrement pertinent lorsque l’on souhaite réduire localement les erreurs, même si
la cohérence globale de l’image n’est pas garantie.

6.2.2 Méthode de calcul

Le calcul analytique exact de P (Xs = xs | Y = y) est en général inenvisageable, car
il nécessiterait de sommer sur toutes les configurations possibles de l’image. En pratique,
on utilise des techniques d’échantillonnage comme l’algorithme de Gibbs pour générer un
ensemble de configurations x(1), . . . , x(N) distribuées selon la loi a posteriori.

P (Xs = xs | Y = y) ≈ 1

N

N∑
k=1

1{x(k)
s =xs}

On sélectionne ensuite, pour chaque pixel s, la valeur qui apparaît le plus souvent :

x̂MPM(s) = argmax
xs

Fréquence(xs)

6.2.3 Intérêt de l’estimateur MPM

L’estimateur MPM présente plusieurs avantages :
— Il est moins sensible à l’initialisation que le MAP, car il s’appuie sur des moyennes

statistiques issues de multiples échantillons.
— Il est robuste au bruit local et bien adapté lorsque plusieurs solutions globales sont

envisageables (situation multimodale).
— Il fournit une estimation pixel par pixel, ce qui peut être utile dans certaines appli-

cations où la précision locale est primordiale.

En revanche, comme il ne tient pas compte explicitement des interactions entre pixels
dans la décision finale, il peut produire une image moins cohérente globalement, avec un
effet « flou » ou bruité sur certaines zones.

6.2.4 Application de l’estimateur MPM

Pour simuler un estimateur MPM, il nous faut tout d’abord générer une distribution
de Gibbs. Chaque configuration représente un état possible du champ aléatoire, avec la
valeur des pixels suivant la distribution de Gibbs. Voici un exemple de cette distribution
avec les configurations x(1), x(2), x(3) :
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Figure 19 – Représentation de gauche à droite des configurations x(1), x(2), x(3) issues
d’un échantillon de Gibbs

Maintenant, nous nous intéressons au pixel s00 en haut à gauche. Les valeurs du pixel
s00 dans ces configurations sont :

— x
(1)
00 = 1

— x
(2)
00 = 1

— x
(3)
00 = 0

Nous devons maintenant déterminer la fréquence de chaque état du pixel s00 dans les
configurations x(1), x(2), x(3) :

— Fréquence(1) = 2 (car 1 apparaît deux fois).
— Fréquence(0) = 1 (car 0 apparaît une fois).
L’estimateur MPM choisit l’état qui a la fréquence la plus élevée. Dans ce cas, l’état

1 apparaît le plus souvent, donc :

x̂MPM(s00) = argmax
xs

{Fréquence(1),Fréquence(0)} = argmax{2, 1} = 1

Ainsi, le pixel en haut à gauche apparaît blanc dans l’image finale générée par notre
estimateur. Ce processus est appliqué de manière similaire à chaque pixel, ce qui aboutit
à une image d’un carré nettoyée du bruit.

Figure 20 – Image restaurée par l’estimateur MPM

6.3 Estimateur TPM pour la restauration d’images

6.3.1 Définition de l’estimateur TPM

L’estimateur TPM (Thresholded Posterior Mean) est basé sur l’espérance condition-
nelle de chaque pixel Xs connaissant l’image observée y. Contrairement aux estimateurs
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MAP et MPM qui choisissent un état précis, l’estimateur TPM calcule une moyenne
pondérée des valeurs possibles :

x̂TPM(s) = E[Xs | Y = y]

Lorsque les états sont discrets (par exemple {0, 1} ou un nombre fini de classes), on
applique souvent un seuillage (ou un arrondi) pour obtenir une image utilisable :

x̂TPM(s) = ⌊E[Xs | Y = y] + 0.5⌋

6.3.2 Méthode de calcul

Comme pour l’estimateur MPM, cette espérance est difficile à calculer directement.
On l’approche par une moyenne empirique sur des échantillons obtenus via un algorithme
de Monte Carlo (Gibbs ou Metropolis) :

E[Xs | Y = y] ≈ 1

N

N∑
k=1

x(k)
s

Le seuillage final permet de transformer cette estimation continue en une image discrète
(ou binaire), si nécessaire.

6.3.3 Intérêt de l’estimateur TPM

L’estimateur TPM est le plus adapté lorsque le critère d’évaluation est l’erreur qua-
dratique moyenne. Il possède les qualités suivantes :

— Il lisse naturellement l’image : les zones bruitées sont moyennées, ce qui atténue le
bruit aléatoire.

— Il est bien adapté aux images à niveaux de gris et aux problèmes où les transitions
douces sont préférées.

— Il est facile à calculer une fois les échantillons générés.

En revanche, ce lissage peut être un inconvénient dans des contextes où les discontinuités
(contours nets) sont importantes, comme en segmentation. L’estimateur TPM tend alors
à produire des images floues ou intermédiaires, notamment lorsque les classes sont mal
séparées.

6.3.4 Application de l’estimateur TPM

Comme pour MPM, pour simuler un estimateur TPM, il nous faut générer un échan-
tillon de configurations à partir de la distribution a posteriori via un algorithme de Monte-
Carlo, comme Gibbs ou Metropolis. Mais cette foi-ci, les pixels sont estimés en calculant
la moyenne de leurs valeurs dans toutes les configurations échantillonnées.

Prenons l’exemple du pixel s00 en haut à gauche, dont les valeurs dans les configura-
tions x(1), x(2), x(3) sont :

— x
(1)
00 = 1

— x
(2)
00 = 0

— x
(3)
00 = 1
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Nous allons maintenant calculer l’espérance de s00 :

E[Xs00 | Y = y] ≈ 1

3
(1 + 0 + 1) =

2

3

Cette moyenne nous donne une estimation continue du pixel. Cependant, pour générer
une image binaire, nous appliquons un seuil pour obtenir une valeur discrète, par exemple :

x̂TPM(s00) =

⌊
2

3
+ 0.5

⌋
= 1

Ainsi, pour le pixel s00, l’estimateur TPM choisit la valeur 1. Ce processus est répété
pour chaque pixel de l’image. Dans le cas de face, et bien souvent on obtient des résultats
similaires a ceux obtenus avec un estimateur MPM.

6.4 Pré-traitement de l’image

Avant d’appliquer les différents estimateurs à des images, nous avons conçu une fonc-
tion qui transforme l’image en niveaux de gris en un espace d’états discrets. Chaque pixel
de l’image peut prendre une valeur parmi un ensemble fini d’états λi, où Card(E) repré-
sente le nombre d’états possibles. Pour une image en noir et blanc, il y a généralement 256
nuances de gris possibles (sur 8 bits), bien que l’œil humain ne soit capable d’en distin-
guer qu’environ une trentaine. En fonction des besoins de notre expérience, nous pouvons
restreindre ce nombre d’états en réduisant la plage de valeurs possibles des pixels, pas-
sant ainsi de Card(E) = 256 à un Card(E) plus petit, par exemple Card(E) = 16 ou
Card(E) = 2, selon les spécifications de l’expérience.

6.5 Conclusion sur les estimateurs

En comparant les résultats obtenus avec les différents estimateurs, on observe qu’ils
sont plus ou moins équivalents. Mais dès qu’on a des images composées de plusieurs
éléments, l’estimateur TPM à tendance à générer des images floues. Cela est dû au fait
que l’on utilise ici la moyenne empirique sur les échantillons.

Les estimateurs MAP, MPM et TPM correspondent à des stratégies différentes :
— MAP : cohérence globale, sensible à l’initialisation, bon compromis biais/variance.
— MPM : décisions locales fiables, robustes, mais sans cohérence globale.
— TPM : lissage efficace et rapide, mais perte possible de détails structurants.
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Figure 21 – Illustration d’une configuration comparant différentes simulations selon le
modèle d’Ising avec et sans recuit, bruit : (p = 0.3), nombre d’itérations : (iter = 105) et
nombre d’états : (nbetats = 3)

Figure 22 – Illustration d’une configuration comparant différents estimateurs selon le
modèle d’Ising, bruit : (p = 0.2), nombre d’itérations : (iter = 205) et nombre d’états :
(nbetats = 64)

Figure 23 – Illustration d’une configuration comparant différents estimateurs selon le
modèle d’Ising, bruit : (p = 0.1), nombre d’itérations : (iter = 105) et nombre d’états :
(nbetats = 16)

Ici, on peut dire que les modèles utilisés ne sont pas suffisants. Chercher d’autres papier
qui font de l’apprentissages sur les images médicales

7 Conclusion générale

APPLICATION : FAIRE UNE ETUDE DE CAS
APPLICATION SUR LES COULEURS RGB (256*3) VARIATIONS POUR CHA-

CUN DES TROIS CANAUX ON ARRIVE A UN CERTAIN NIVEAU DE R,G ET B /
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FAIRE DU POTTS SUR LES COULEURS / COMMENT SELECTIONNER LES COU-
LEURS ? SINON FAIRE SUR NIVEAUX DE GRIS ? PRENDRE UNE TRENTAINE

COMPARAISON DES METHODES
LIMITES DES METHODES
SCORE D’ERREUR : CRITERE D’EVALUATION OBJECTIF AFIN DE COMPA-

RER TOUS LES MODELES CALCULER LES PROPORTIONS, FAIRE LA MOYENNE
DES PROPORTIONS ET ESPERANCE=SCORE (UN PEU COMME UNE LOI DE
BERNOULLI MAIS PAS TOUT A FAIT) FORECEMENT D’ESPERANCE FINIE CAR
BORNEE

AJOUTER LES SCORES POUR LES IMAGES
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