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1 Introduction

Ce Travail d’Etude et de Recherche a pour objectif d’introduire les méthodes de re-
construction d’images par approche probabiliste. Il se base sur des travaux de physique
statistique et de biologie. A partir d’images, des relations physiques entre les éléments,
représentés par des pixels, sont simulées. Notre travail a donc pour objectif de réutiliser
ces différentes approches et de les appliquer directement aux images, et plus particulié-

rement & leur reconstruction. Nous nous intéressons aux images bruitées en noir et blanc
ou en nuances de gris.

Il semble assez évident qu’une image ne soit pas seulement constituée de pixels seuls
et indépendants les uns des autres mais aussi de zones délimitées, contrastes et textures.
Par exemple, sur un zébre, les rayures sont horizontales sur le corps et verticales sur les
pattes. Prenez un zébre au hasard dans toute la population et vous étes quasiment sir
que la probabilité qu’il présente le motif soit égale & 1. Ce phénoméne s’explique par la
morphogénese : la loi veut que le zébre soit rayé de cette maniére la; mais le sujet de
ce travail n’est pas le zébre. L’organisation des rayures ou des pixels sur les images d'un

zébre est donc sous-tendue par des relations de voisinage entre les cellules et les pixels.
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FIGURE 1 — A coté du zébre sont représentés les résultats de I'étude de Junxiang Yang

et Junseok Kim (2023) qui simule la formation d’un motif zébré non homogene a 'aide
d’un modéle mathématique avec des parameétres spatiaux.

Le sens du formalisme markovien est donc de reprendre les relations spatiales, de
voisinages, entre des zones et pixels. Un poil de zebre au milieu d’'une bande noire est
quasi strement noir (sauf s’il est vieux, peut-étre). La probabilité de 'état d’un site
dépend donc du voisinage de ce méme site. Pour modéliser ces relations spatiales, nous

nous placons dans le cadre mathématique des champs de Markov. Une image est une
modélisation d’un champ de Markov.

Toutefois, exploiter ces champs pour des taches de traitement d’images, ici leur recons-
truction, demande d’estimer des configurations optimales dans des espaces de grandes di-
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mensions. Cest 1a I'intérét des méthodes de Monte-Carlo par chaines de Markov (MCMC).
En effet, ne connaissant pas la loi d’'un certain champ de Markov, on peut la simuler par
I'intermédiaire des méthodes de Monte-Carlo. Mais le champ (I'image) ayant un grand
nombre de configurations possibles, on ne peut appliquer la démarche de Monte-Carlo
classique qui est de simuler un grand nombre de fois le champ et d’obtenir I’espérance du
champ de Markov par la moyenne des simulations, et qui utilise donc la loi des grands
nombres. Afin d’illustrer le probléme, on peut prendre I’exemple d’un dé & 6 faces. Si on ef-
fectue 1000 lancers, on regarde le nombre de fois que ’on a obtenu chaque face afin d’avoir
une idée de la loi de probabilité du dé. Cette démarche fonctionne bien en principe puis-
qu’il n’y a que six modalités possibles. Or, si nous avons par exemple 10254785 modalités,
on ne peut plus procéder de la sorte, puisque pour avoir un grand nombre d’occurrences
de chaque modalité, il faudrait un nombre de simulations "démentiel". Aussi, pour pallier
cette limite de la méthode de Monte-Carlo classique, on introduit des algorithmes permet-
tant de simuler un champ de Markov qui va converger vers la loi de probabilité qui nous
intéresse (cette convergence en loi est associée a la loi faible des grands nombres). Nous
nous intéressons a deux algorithmes : I’algorithme de Gibbs et I’algorithme de Metropolis-
Hastings. On doit beaucoup du cadre théorique des méthodes de Monte-Carlo & Nicholas
Metropolis, mais il écrit aussi les prémices de ’algorithme a son nom que nous utilisons
dans la suite de ce travail, ainsi que la méthode du recuit-simulé. Grace a ses travaux, on
peut donc estimer I'image que 'on souhaite reconstruire.

Finalement, nous comparons les différents algorithmes, méthodes et estimateurs. A
travers l'analyse des différents estimateurs, des modéles d’attache aux données et des
stratégies d’optimisation, nous discuterons des avantages et des limites des approches par
méthodes de Monte-Carlo dans le domaine du traitement d’images.

2 Modélisation probabiliste de 'image

2.1 Définition d’une image

On définit I'image comme un ensemble discret de sites s;. Ainsi, S est un ensemble
fini de sites qui représentent les pixels de I'image, et les descripteurs des états de ces sites
représentent la couleur des pixels, a valeur dans E, I'espace des états de la chaine de Mar-
kov. On peut construire un systéme de voisinage des sites, pour générer des intéractions
locales.

2.2 Voisinages et cliques

On définit comme voisinage d’'un site s € S, 'ensemble V; = {t € S} défini par :

%:{s¢m

teV,=seV;

Une clique ¢ est un sous-ensemble de sites voisins entre eux. En théorie des graphes,
une clique est un sous-graphe complet, dont les sommets sont deux a deux adjacents. Le
systéme de cliques dépend du type de voisinage utilisé (4-connexité, 8-connexité), c’est-
a~dire du graphe dont on va extraire les cliques. Une clique est d’ordre ¢ si elle contient ¢
éléments adjacents. On note finalement C' ’ensemble des cliques de 'images. On retrouve
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en dessous de cette explication les ensembles de cliques possibles selon les systémes de

voisinages :
O : ? o-®

ceo e
o oo gw

4-connexité 4 Cy Reéalisations possibles

O OO : ;.4
X Xo ° n
OO0 oo i’q
8-connexité 4 Cy Cs Cy

On comprend qu’a partir du systéme de voisinage, les interactions spatiales entre les
sites sont formalisées par les cliques. Par exemple, dans le cadre de la 4-connexité, on peut
en sortir des réalisations de voisinages possibles au site s;;.
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FIGURE 2 - Voisinages possibles au site s;;

§~><I~§~l><

FIGURE 3 — Ensemble des voisinages a 1 pixel possibles au site s;;

On définit a la suite des cliques les potentiels associés. On note U, le potentiel de la
clique c et dont la valeur dépend du niveau de gris des sites de la clique. Le potentiel global
de I'image, aussi appelé énergie globale de I'image, est donc la somme des potentiels de
toutes les cliques qui la composent :

=y

ceC

Enfin, I’énergie en un site s (énergie locale) correspond a I’énergie des cliques auxquels le

site s appartient :
U= > U
ceC/sec

5
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3 Champs de Markov et de Gibbs

3.1 Approche probabiliste de I'image

Nous avons besoin par la suite de formaliser et de définir rigoureusement les variables
utilisées pour nous placer dans le cadre des champs de Markov.

A partir de s un site de I'image S, on définit X, une variable aléatoire a valeur dans
E. Le descripteur z,, le niveau de gris en s, est une réalisation de la variable aléatoire
X,. On peut alors definir X = (X,, Xy, ...) le champ de Markov a valeur dans Q = E!9I,
ou |S| ou Card(S) est le nombre de sites qui composent I'image. Par exemple, pour une
image a 4 pixels en noir et blanc, on a |S| =4 et £ = {0,1}, et au final on a Q = E* et
Card(Q2) = 2* = 16. Il y a donc 16 images possibles issues de ces 2 conditions.

Dans ce cadre, on considére I'image simplement comme une de ses réalisations x du
champs X. Ainsi, la probabilité globale de I'image x est donnée par P(X = z), et les
probabilités conditionnelles locales d’une valeur (d'un état) en un site s permettent de
mesurer le lien statistique entre un descripteur z; et le reste de I'image. L’hypothése
markovienne permet d’évaluer ces quantités (probabilités).

3.2 Définition d’'un champ de Markov

Considérons x, la valeur du descripteur du site s et ° = ()25 la configuration de
I'image excepté le site s. La définition d’'un champ de Markov est donc donnée par la
relation suivante :

que 'on peut traduire par :

X est un champ de Markov si et seulement si la probabilité condition-
nelle locale en un site n est fonction uniquement de la configuration du
voisinage du site considéré.

3.3 Mesure et champ de Gibbs

Nous cherchons & introduire dans les champs markoviens des propriétés énergétiques
pour accéder a I'expression de probabilités conditionelles locales, c¢’est-a-dire la probabilité
d’un changement d’état au regard du voisinage du site.

Nous utilisons donc la mesure de Gibbs de fonction d’énergie définie comme suit. Soit
U :Q — R et la probabilité P définie sur €) par :
1

P(X = 1) = Zexp(-U(z))

avec
Ux) =Y Udx)
ceC
la somme des énergies des cliques de C' associées au systéme de voisinage V. On note
par ailleurs Z = ) _exp(=U(x)) la constante de normalisation, appelée fonction de
partition de Gibbs. On comprend bien que Q = E 45 est un ensemble de trés grande
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taille. Par exemple, pour une image carrée de largeur 30 pixels en noir et blanc, on a
donc Card(S) = 30 x 30 = 900, aussi Card(Q) = 2. On a ainsi environ 8,45.10%™
configurations possibles d’images. On peut donc remarquer que la fonction de partition
de Gibbs est impossible a calculer, dans la suite nous verrons comment palier ce probléme
pour I’échantillonage du champ de Gibbs.

Le champ de Gibbs est le champ aléatoire X dont la probabilité est la mesure de Gibbs
associée au systeme de voisinage V :

P(X =) = eap(~U(x)) = Zeap(~ 3 Uilx)

On remarque que la configuration d’énergie minimale du champs de Gibbs, et donc celle
qui maximise sa probabilité, est grande.

3.4 Théoréme d’Hammersley-Clifford

Soient S un ensemble fini ou dénombrable, V' un systéme de voisinage sur S et F un
espace d’état discret. Soit (X) un processus aléatoire a valeurs dans 2 = F€ ) Alors :

X est un champ de Markov relativement a V et P(X =x) > 0Vz € Q
=
X est un champs de Gibbs de potentiel associé a V'

Ce théoréme nous permet donc de passer d’'un champ de Markov, avec une énergie globale
difficile & calculer, & un champ de Gibbs, qui a pour propriété de décomposer 1’énergie
globale en somme d’énergies locales.

On obtient alors la probabilité conditionnelle locale suivante :
exp —Uy(Xs = 24| X, =z, € V)
Yonep exp —Us( X, = NX, = 2,,7 € V)

P(Xs =24 X, = 2,7 # 5) =

ou Us(Xs = 4| X, = x,,r € V) est 'énergie locale du site s, qui ne fait intervenir
que ses sites voisins. On peut donc transformer la fonction de partition de Gibbs : elle ne
repose maintenant que sur I’ensemble des états possibles. Pour une image en noir et blanc,
Card(F) = 2, nous n’avons plus que deux termes & calculer, ce qui permet d’augmenter
drastiquement la rapidité des algorithmes que nous décrivons dans la section suivante.

4 Meéthodes de Monte-Carlo : Echantillonnage et réa-
lisations de champs de Markov

Dans cette partie nous discutons des algorithmes développés pour simuler des réalisa-
tions d’'un champ de Markov assimilé & un champ de Gibbs.

Les méthodes de Monte-Carlo nous permettent de faire converger le champ vers la loi
de Gibbs (mesure de Gibbs) de ce méme champ, celle qui minimise 1’énergie globale du
champ. On parle alors de convergence en loi (loi faible des grands nombres), et la mesure
de Gibbs est considérée comme la probabilité invariante du champ :

X, 5 X

7
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4.1 Echantillonneur de Gibbs

L’échantillonneur de Gibbs est une méthode de Monte-Carlo par chaines de Markov
proposée par Geman et Geman en 1984. Elle repose sur la construction itérative d’images,
en générant progressivement des configurations qui suivent une distribution de Gibbs. On
considére que l’algorithme converge aprés un certain nombre d’itérations, et les images
générées sont alors des réalisations de la loi de Gibbs. A chaque site s;; de I'image, on
associe un voisinage V.

A Ditération n + 1, a partir de I'image de I'itération n, I’algorithme procéde par mise
a jour successive (relaxation) :

1. On choisit un pixel s;; aléatoirement dans I'image.
2. Pour chaque état \; € E possible, on calcule I’énergie locale :

Us(xs = >\z ’ ‘/s)

3. On construit alors le vecteur des énergies locales :

Us(xs - )\k | ‘/s)

4. On produit alors, a partir de cette mesure, une réalisation de la loi de Gibbs :

(i) = * exp (—Us(zs =N | V) avec Z = Zexp (—Ug(zs = A | V5))

A
AEE

la probabilité que le site s;; prenne la valeur \; a I'itération n + 1 est donc donnée
par le i-éme élément du vecteur de la loi de Gibbs.

5. On tire dans F un état A; selon la loi i, et on remplace I'état du site s;;.
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W, =Uy+Us=1+1=2

Z —exp—2+exp—6

Uz =1V)) =Uua+Ua=3+3=6

FIGURE 4 — Représentation d'un calcul d’énergie locale et de mesure de Gibbs dans le
cadre d'un systéeme de voisinage au site s et en 4-connexité.

4.2 Algorithme de Metropolis-Hastings

L’algorithme de Métropolis-Hastings, mis au point par W. K. Hastings en 1970, est
issu de la physique statistique et est une généralisation de 'algorithme de Metropolis
(Metropolis et al., 1953). Il est similaire a I’échantillonneur de Gibbs dans le sens ou ¢’est
aussi une méthode de Monte-Carlo par chaines de Markov permettant une construction
itérative d’images qui sont, aprés un assez grand nombre d’itérations, des réalisations
d’une loi de champs de Markov. Mais il différe de 1’échantillonneur de Gibbs par le fait
qu’il n’accepte pas toutes les transitions : il y a une condition aux changements des états.

En effet, 'algorithme repose sur les étapes suivantes :

1. On choisit aléatoirement un pixel s;; dans I'image.

2. On récupere 'état du site s;5, noté A; et a valeurs dans F, puis on calcule 'énergie

locale du site :
Us(xs - >\s | ‘/s)

3. On tire un état A\, € E selon la loi uniforme U sur E.

4. On calcule I'énergie locale du nouveau site 7;; associée a ce nouvel état :
Ur(zs =M\ | Ve =)
5. On calcule la variation des énergies locales :
AU =Up(zs =N | Vi) = Us(ws = Ay | V2)
6. Le changement d’état du site s;; par A, est accepté si AU < 0

9
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7. Sinon, on tire une probabilité p (tirage aléatoire selon une loi uniforme sur [0, 1],
permet des tirages équiprobables), et si p < exp(—AU), on accepte le changement
d’état du site s;; par A,.

Contrairement a I’échantillonneur de Gibbs, ici seules les transitions qui diminuent
I’énergie ou qui satisfont une certaine probabilité d’acceptation sont retenues.

4.3 Algorithme du recuit simulé

L’algorithme du recuit simulé est dédié a la recherche des configurations les plus pro-
bables, qui sont obtenues a des états d’énergie minimale. Les images obtenues par recuit
simulé correspondent en théorie aux minima globaux d’énergie et sont donc uniques. On
introduit pour cela un parametre de température 7' > 0.

En particulier, lorsque T est élevée, la recherche est exploratoire c’est-a-dire que les
changements d’états sont acceptés mémes s’ils sont sous optimaux. Lorsque T — 0, I’al-
gorithme se rapporche des minima globaux de 1’énergie U.

Le recuit simulé prend donc en compte la température 7', qui est introduite comme
une suite appliquée & un processus. On choisit une température initiale Ty plutét grande
puis, a chaque itération, la température diminue de fagon lente avec :

c
1, > ———
~ log(2 +n)

ou n est le nombre maximal d’itérations et ¢ est une constante dépendant de la varia-
tion énergétique globale maximale sur I'espace des configurations (en pratique, on prend
¢ =Tp). Appliquer un recuit simulé aux algorithmes de Gibbs ou de Metropolis-Hastings
(le recuit simulé étant un optimisateur, il doit étre associé & un algorithme) influence leur
derniére étape de traitement. On accepte le changement de I'état du site s;; :

— pour l'algorithme de Gibbs : selon la réalisation de la loi de Gibbs pour Yl sachant

T
que :

avec Z(T) =3, co exp#.

— pour 'algorithme de Metropolis-Hastings : si % < 0, sinon si p < exp (—M) ou p

T
est une probabilité tirée sur une loi uniforme U.

Autrement dit, plus la température T diminue, plus les estimateurs seront forcés a
sélectionner I’énergie la plus basse, puisque leur probabilité conditionnelle sera plus élevée
par rapport aux configurations d’énergie plus élevée. L’algorithme s’arréte lorsque les
changements des états des sites sont faibles (En pratique, I’algorithme s’arréte au bout
d’un certain nombre d’itérations).

Contrairement aux autres algorithmes et modéles, le recuit simulé est le seul & avoir
une convergence presque sure (loi forte des grands nombres) vers un minimum global,
expliquant pourquoi on a de meilleurs résultats comme le montre les réalisations dans la
section suivante.

10
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4.3.1 Applications et Taux de restauration

On introduit avant de commencer & faire une application une mesure de taux de restau-
ration, soit le taux de bonne restitution d’un pixel de I'image de départ par ’algorithme
utilisé : )

€= —F—— Ty —
Card(S) ; =)

Nous avons codé ce taux de restauration € en language Python comme suit :

1 def taux_restauration(img_originale, img_restauree):

2 pixels_corrects = np.sum(img_originale == img_restauree)
3 total_pixels = img_originale.size
4 taux = (pixels_corrects / total_pixels) * 100

5 return taux

Image originale Gibbs classique Gibbs recuit simulé
(¢=100.00 (€=97.00) (€=97.40)
; .
Image bruitée Metropolis cIassiqué Metropolis recuit simulé

_ (e=95.63) _ (€=97.03)

FIGURE 5 — Illustration d'une configuration comparant différentes simulations selon le
modéle d’Ising avec et sans recuit, bruit : (p = 0.3), nombre d’itérations : (iter = 109),
valeur des parameétres : (§ = 1)

11
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Image originale Gibbs classique Gibbs recuit simulé

w W

Metropolis classique Metropolis recuit simulé

|

Image bruitée

S

©
W
¥

FIGURE 6 — Illustration d’une configuration comparant différentes simulations selon le
modele d’Ising avec et sans recuit, bruit : (p = 0.3), nombre d’itérations : (iter = 10%),
valeur des parameétres : (5 = 4)

4.4 Algorithme des modes conditionnels itérés (ICM)

L’algorithme du recuit simulé est trés cotiteux en temps de calcul car il requiert la
génération d’un grand nombre de configurations au fil des itérations. Aussi ’algorithme des
modes conditionnels itérés (Iterated Conditional Mode, ICM) est utilisé car beaucoup plus
rapide (caractére déterministe de I’algorithme) mais il n’y a pas de preuve de convergence
vers un minimum global d’énergie comme pour le recuit simulé.

L’ICM est un algorithme itératif qui modifie le descripteur x, de chaques sites s de
I'image de maniére déterministe. Il part d’une configuration initiale et construit une suite
d’images qui converge vers une approximation du maximum a posteriori . En pratique,
chaque descripteur est mis a jour avec la configuration qui permet la diminution d’énergie
la plus importante. Aussi, 'TCM est plus rapide car on se contente de prendre la variation
d’énergie locale minimale.

Aussi, a l'itération n-+1, soit pour la mise a jour n de I'image, on parcourt tous les
sites s de l'image et :

— on calcule les probabilités conditionnelles locales pour chaque état A € E du site s,
soient P(X; = A\ | ©,(n),r € V;). En pratique, on calcule les variations d’énergies
locales : AU = Us(\ | Vi) — Ug(z5(n) | Vi)

— on met a jour chacun des descripteurs z par 1’état A maximisant la probabilité
conditionnelle locale :

Ts(n+1) = Argmazyep P(Xs = M| Z(n),r € V5)
En pratique, on minimise la variation d’énergie locale (le descripteur x4 est mis a
jour en prenant l'état A si AU < 0).
L’algorithme s’arréte lorsque les changements des états des sites sont faibles.
Il est possible de montrer que I’énergie globale de la configuration & diminue et converge
vers un minimum d’énergie local (et non global comme pour le recuit simulé de part le

paramétre de température), algorithme de 'ITCM dépendant fortement de la configuration
initiale.

12
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5 Application a la restauration d’images

5.1 Modéle d’Ising

Le modeéle d’Ising est un modeéle de physique statistique : il simule le spin (deux états)
de particules dans un espace a deux dimensions, de température 5 et leurs interactions
locales. L’espace des états est donc E={—1,1} (espace binaire). Le modeéle utilise les
images comme un milieu & deux dimensions ot chaque site correspond a une particule et
la couleur (noir ou blanc) & son état. On utilise ainsi ce modéle pour la reconstruction
d’images en noir et blanc.

FIGURE 7 — Modéle d’Ising a 4 particules. Les fléches représentent le spin des atomes,

est la température du milieu et le champ magnétique extérieur appliqué au modele.
On donne a droite la traduction en image dans le modéle.

Les potentiels des cliques d’ordre 2 sont définis de la maniére suivante :

-0 sixs==x
Uc:(s,t)(xsa xt) = _51'8:515 - { !

15} sinon
ou [ est la constante de couplage entre sites voisins. Les potentiels des cliques d’ordre 1
(un seul site) sont de la forme —fz;.

L’énergie globale s’écrit alors :

U(z)=— Z Brgx; — ZB:):S

e=(s,t)eC ses

ou B représente un champ magnétique externe.

La valeur de 3, la température du milieu modélisé, influence 1’évolution du modéle.
Si (8 est positif, les configurations les plus probables, donc celles d’énergie minimale, sont
celles pour lesquelles les sites ont le méme état; ceci correspond & des spins de méme
signe soit un ferromagnétisme (capacité de certains corps a orienter tous leur spins dans
un sens). Si [ est négatif, sont privilégiées les configurations ou les sites sont d’états
opposés, soient les spins de signes opposés (anti-ferromagnétisme).
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En nous replagant dans le cadre markovien, au temps n+1 on établit les probabilités de
transition du descripteur du site s;; par pgz.) = P(X,(izl =i |V nX, =i), V(,j) € E~
On obtient la matrice de transition de la chaine de Markov, mise a jour a chaque itération
de l'algorithme choisi.

P(—nl),—1 pﬁ"f M — P-1,-1 P-1.1
P11 P11

p gnz 1

FIGURE 8 — Chaine de Markov et matrice de transition du site s au temps n+1

Les figures suivantes montrent des réalisations du modeéle d’Ising pour différents pa-
ramétres (différentes valeurs de 5 et donc une régularisation plus ou moins importante)
avec les algorithmes de Gibbs et de Metropolis-Hastings.

Image originale Gibbs classique

Metropolis classique

FIGURE 9 — Illustration d’une configuration simulée selon un modéle d’Ising, bruit :
(p = 0.3), nombre d’itérations : (iter = 10°), valeur des parameétres : (3 = 1)
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Image originale Gibbs classique

Image bruitée

LT R TR SR >

Metropolis classique

-

FIGURE 10 — Illustration d'une configuration simulée selon un modele d’Ising, bruit :
(p = 0.3), nombre d’itérations : (iter = 10°), valeur des paramétres : (3 = 2)

Image originale Gibbs classique

Image bruitée
L T T
b _'.__'l '_'\.'\.'_- FRNA

Metropolis classique _

Hi

FIGURE 11 — Illustration d'une configuration simulée selon un modeéle d’Ising, bruit :
(p = 0.3), nombre d’itérations : (iter = 10%), valeur des paramétres : (8 = 4)
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5.2 Modéle de Potts

Le modele de Potts ou modéle cellulaire de Potts est un modéle d’'interaction et de
comportement de cellules dans un environnement en 2 dimensions. Le modéle de Potts est
une généralisation du modeéle d’Ising vers un espace d’états de taille supérieure a 2, on a
donc E = {0,1,..., N} un espace discret de taille N 4 1. Le modéle utilise 'image comme
un milieu de développement des cellules, la couleur donne le type de cellules présentes
dans une colonie.

Les potentiels ne sont cette fois-ci définis que pour des cliques d’ordre 2 :

— siz, =x
Uc:(&t)(xs; xt) = _ﬁxs‘xt = { ﬁ !

I} sinon

Ici B représente 1’étalement du groupe de cellule sur le milieu. Si 5 est positif, les
configurations les plus probables sont celles pour lesquelles les sites voisins ont les mémes
descripteurs (par exemple le méme niveau de gris), ce qui en traitement d’images donne
des réalisations constituées de larges zones homogénes dont la taille varie selon f3.

Comme pour le modéle d’Ising, en nous replagant dans le cadre markovien, au temps
n-+1 on établit les probabilités de transition du descripteur du site s;; par pgj;-) = P(X 7(18_21 =
7| VE'NX, =), V(i,j) € E% On obtient la matrice de transition de la chaine de Markov,
mise & jour a chaque itération de ’algorithme choisi.

(n)
Po.N

(n)
l)_i\'r.(]
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woo sy oy %
EEEr
MM = pgtLo p27,11 p2?2 pQT,LN
Py P p%‘é p%‘)N

FIGURE 12 — Chaine de Markov et matrice de transition du site s au temps n+1

Il est possible de parfaire le modeéle de Potts en utilisant des valeurs de [ différentes
en fonction des directions des cliques (par exemple, une exploration verticale/horizontale
en 4-connexité) et ainsi privilégier certaines directions. Les figures suivantes montrent des
réalisations du modéle de Potts pour différents paramétres (différentes valeurs de [ et
donc une régularisation plus ou moins importante) avec les algorithmes de Gibbs et de
Metropolis-Hastings.

Image originale Gibbs classique

Metropolis cIaSS|que

Image bruitée

FIGURE 13 — Illustration d’une configuration comparant différentes simulations selon
le modele de Potts, bruit : (p = 0.3), nombre d’itérations : (iter = 10°), valeur des
paramétres : (§ = 1)
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Image originale Gibbs classique

Metropolis classique

FIGURE 14 — Illustration d’une configuration comparant différentes simulations selon
le modéle de Potts, bruit : (p = 0.3), nombre d’itérations : (iter = 10%), valeur des
paramétres : (8 = 4)

5.3 Modéle Markovien Gaussien

Le modéle markovien gaussien convient a des images en deux dimensions et a pour
espace d’états £ = {0,1,..., N}, discret et de taille N. Plus particuliérement, dans le
cas du traitement d’images, ce modeéle est utilisé pour les images en niveaux de gris ou
E ={0,...,255}, et favorise les niveaux de gris proches pour des sites voisins. On parle
de modeéle markovien gaussien car 'image comporte un bruit gaussien, dont la densité de
probabilité est une distribution gaussienne (suit une loi normale).

Les potentiels des cliques d’ordre 2 sont définis de la maniére suivante :

U(.CU) = 5 Z (335 - xt)2 - OCZ(Z'S - ,us)2
)

c=(s,t ses

ol jis est une moyenne de niveaux de gris attendue pour le site s lorsque les descripteurs
2, sont les niveaux de gris. Le premier terme est un terme de régularisation, le second terme
correspond a 'attache aux données. Si 3 est positif, les configurations qui sont favorisées
sont celles ou les différences entre les descripteurs des sites s et ¢, soit les niveaux de gris
entre les sites voisins, sont faibles. Le rapport % pondére les influences respectives des
termes de régularisation et d’attache aux données, les valeurs absolues de ces paramétres
décrivant le caractére équiréparti ou localisé de la distribution.

6 Estimateurs dans un cadre Markovien

Dans le cadre de la restauration d’images dégradées (par exemple bruitées), une ap-
proche probabiliste permet d’estimer 'image idéale a partir de I'image observée. On mo-
délise I'image parfaite inconnue X comme un champ de Markov (MRF), et 'image bruitée
Y comme une observation de ce champ & travers un processus bruité. L’objectif est de
retrouver une configuration Z du champ X qui soit la plus plausible compte tenu de
I'observation y. Comme nous sommes dans un cadre probabiliste, on peut chercher la
configuration & qui maximise la probabilité P(X =z | Y = y), et qui se note :

18
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PY=y|X=x) - P(X =2
P(Y =y)

PX=z|Y=y=

6.1 Estimateur MAP pour la restauration d’images

6.1.1 Définition de ’estimateur MAP

L’estimateur MAP (Maximum A Posteriori) consiste a rechercher la configuration la
plus probable de I'image idéale x, compte tenu de l'image bruitée observée y. Il s’agit
donc de maximiser la probabilité conditionnelle suivante :

Tyap =argmax P(X =z |Y =y)
En appliquant la régle de Bayes, cette probabilité peut étre réécrite comme :
PY=y|X=x)P(X=n2)
PY =y)

Le dénominateur P(Y = y) étant constant (indépendant de z), on peut se contenter de
maximiser le numérateur :

PX=x|Y=y)=

Tyap =argmax P(Y =y | X =2) - P(X =2)
x
Cette expression refléete un compromis entre deux aspects fondamentaux :

— L’attache aux données P(Y =y | X = x) : elle mesure & quel point une image can-
didate x est compatible avec les observations bruitées y. Sous ’hypothése (fréquente
mais simplificatrice) d’indépendance des pixels, c’est a dire a quel point x aurait pu
produire y, selon le modéle de bruit.

— La régularisation P(X = z) : elle refléte les connaissances a priori sur les images
«plausiblesy. Ce terme est modélisé par un champ de Markov (Ising ou Potts par
exemple) et favorise les états ou les pixels voisins ont des états similaires.

6.1.2 Formulation énergétique

Comme travailler directement avec les probabilités peut s’avérer difficile, On préfeére
reformuler le probléme en termes d’énergie, en prenant le négatif du logarithme de la
densité de probabilité (ce qui revient & minimiser une « énergie » plutdt qu’a maximiser
une probabilité) :

Uz|y)=—mPY=y|X=2)—InP(X =2

[estimateur MAP devient alors :

Tyrap = argmin U(z | y)

Cette énergie U(z | y) se décompose en deux termes :

U )= S8 45 S a0

202
seS {S,t}GCQ
N TV 4
Attache aux données Régularisation
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Plus précisément :

— Le premier terme mesure ’écart entre chaque pixel x; de I'image reconstruite et 1’ob-
servation bruitée y,. Il repose sur I’hypothése que le bruit est gaussien, de moyenne
nulle, de variance o2 et de densité :

flas) = #02 exp (——(xs — ys)2)

2 202

Aussi faisons-nous une approximation de I'image par une loi normale discrétisée.

Comme la variance o? intervient au dénominateur, cela signifie que plus elle est

petite, plus 'attache aux données est forte, donc on considére que I'image restaurée

x4 colle fortement & 'image bruitée y,. Tandis qu’avec une plus grande valeur de

0%, on donne plus d’importance a la régularité.

— Le second terme modélise les interactions locales entre pixels voisins. Il favorise
des images dans lesquelles les pixels voisins ont des valeurs similaires. Ce terme est
dérivé d'un champ de Markov (et plus précisément d’un champ de Gibbs), avec des
cliques d’ordre 2 :

P(X=x)ocexp | =B Y ¢(zs,m)

{s,t}€Cs

Le choix de la fonction ¢ définit comment les voisins du modéle interagissent les uns
avec les autres en fonction de 1’état de leur pixels. Et dépend de 'application : par
exemple, ¢(z,, ;) = (x5 — 14)? favorise la continuité, tandis qu'un modele de Potts
(ce que l'on utilise dans nots estimateurs) pénalise uniquement les discontinuités

(18 ¢(I’S, -Tt) = ]lxs;éxt)'

Le paramétre 8 > 0 est un coefficient de pondération qui équilibre la fidélité aux données et
la régularité. Une petite valeur de 3 laisse plus de liberté a 'image pour suivre les données,
au risque de conserver le bruit. Une plus grande valeur de 3 force une image plus lisse,
au risque de lisser les détails fins. De plus, choisir un > 0 pénalise les différences entre
pixels (c’est ce que l'on veut faire), tandis qu'une valeur négative de [ aura tendance
a faire l'inverse, c’est-a-dire récompenser les différences, ce qui crée des motifs parfois
intéressants (mais qui n’ont plus rien a voir avec I'image de base).

Image originale

Image ruitée ] MAP (B=1, 0%2=1) MAP (=0.2, 0°=1) MAP (B=-

FIGURE 15 — Illustration d’une configuration comparant différentes valeurs de beta pour
un estimateur MAP, bruit : (p = 0.3), nombre d’itérations : (iter = 10°) et nombre
d’états : (nb.tats = 3)
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On voit bien que paramétrer une grande valeur de [ a eu pour conséquence de favoriser
la régularisation, donc pour 100 000 itérations on obtient une image presque uniforme qui
ressemble & I'image initiale. Les carrés gris on été bien délimités par I'estimateur avec une
petite valeur de 3, mais il reste un nombre non négligeable de pixels blancs qui n’ont pas
été changés. L’algorithme fait confiance au bruit (il ignore presque le membre de droite),
il préfére une solution fidéle a I'image bruitée, méme si elle est incohérente spatiallement.
Le résultat d’un estimateur est aussi visualisable lorsqu’on lui donne pour mission de créer
le plus de différences possibles entre les pixels.

6.1.3 Intérét de ’estimateur MAP

L’estimateur MAP est particulierement adapté aux problémes de restauration d’images
car :

— 1l offre une solution globale cohérente, en prenant en compte a la fois les données et
des contraintes de régularité.

— Il est robuste au bruit, notamment dans les situations ol les observations sont
fortement dégradées.

— Il se préte bien a des techniques d’optimisation efficaces, qu’elles soient stochastiques
(comme le recuit simulé) ou déterministes (comme l’algorithme ICM ou les méthodes
de gradient).

Toutefois, comme la fonction d’énergie U(z | y) est généralement non convexe, la recherche
du minimum global est complexe. Des algorithmes comme le recuit simulé permettent de
s’approcher de ce minimum en explorant intelligemment ’espace des solutions, tandis que
des méthodes plus rapides comme 1’agorithme ICM convergent vers un minimum local, ce
qui peut suffire dans certains cas.

™

C(w) 1 fonction convexe c(w) 4 fonction non convexe

II
\
III

w' w'

L 4

FIGURE 16 — Rappel : Une fonction convexe admet un unique minimum, il est donc global.
Pour une fonction non convexe il est plus délicat de déterminer le minimum global, il faut
éviter les minima locaux

6.1.4 Application de ’estimateur M AP

Nous présentons ici deux fagons de simuler un estimateur MAP : une approche déter-
ministe par descente locale (type ICM), et une approche stochastique par recuit simulé.
IIs recherchent tous deux la configuration la plus probable (la moins énergétique).
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L’algorithme ICM met a jour les pixels un par un. Dans notre cas, a chaque itération,
un pixel s;; est sélectionné aléatoirement (légére variation de la version canonique). Le
reste de 'algorithme reste le méme.

Le recuit simulé introduit une température décroissante dans le processus, ce qui per-
met d’accepter temporairement des solutions sous-optimales pour mieux explorer 1’espace
des configurations.

Image originale mae brutée _ MAP (descente locale) MAP (recuit simulé€)

FIGURE 17 — Illustration de deux méthodes d’optimisation pour I'estimateur MAP, bruit :
(p = 0.3), nombre d’itérations : (iter = 10°), nombre d’états : (nb.tats = 3), sigma :
(0% =2), beta : (8 =0.3)

Evolution de I'énergie au cours des itérations

—1500 A
—— MAP (descente locale)

—— MAP (recuit simulé)

—2000 A

—2500 A

—3000 A

Energie globale

—3500 A

—4000 -

—4500 A

T T T T T
0 20000 40000 60000 80000 100000
Itérations

FIGURE 18 — On observe une évolution similaire de I’énergie pour les simulations par [CM
et recuit simulé.

6.2 Estimateur MPM pour la restauration d’images

6.2.1 Définition de ’estimateur MPM

L’estimateur MPM (Maximum Posterior Marginal) adopte une stratégie locale : au
lieu de chercher l'image entiére la plus probable (comme le fait I'estimateur MAP), il
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cherche, pour chaque pixel s, la valeur de z, la plus probable compte tenu de I'image
observée y. Cela revient a maximiser la marginale de la loi a posteriori :

Typym(s) =argmax P(Xy =, | Y =vy)

Cet estimateur vise a minimiser le nombre moyen de pixels mal restaurés, ce qui le rend

Y
particuliéerement pertinent lorsque I’on souhaite réduire localement les erreurs, méme si
la cohérence globale de I'image n’est pas garantie.

6.2.2 Meéthode de calcul

Le calcul analytique exact de P(X; = x5 | Y = y) est en général inenvisageable, car
il nécessiterait de sommer sur toutes les configurations possibles de I'image. En pratique,
on utilise des techniques d’échantillonnage comme I’algorithme de Gibbs pour générer un
ensemble de configurations (), ..., 2™ distribuées selon la loi a posteriori.

s

N
1
PXs=2s|Y =y) = N Z 1{x(k):xs}
k=1
On sélectionne ensuite, pour chaque pixel s, la valeur qui apparait le plus souvent :

ZTarpu(s) = argmax Fréquence(zs)
Ts

6.2.3 Intérét de ’estimateur MPM

L’estimateur MPM présente plusieurs avantages :

— 1II est moins sensible a l'initialisation que le MAP, car il s’appuie sur des moyennes
statistiques issues de multiples échantillons.

— Il est robuste au bruit local et bien adapté lorsque plusieurs solutions globales sont
envisageables (situation multimodale).

— Il fournit une estimation pixel par pixel, ce qui peut étre utile dans certaines appli-
cations ot la précision locale est primordiale.

En revanche, comme il ne tient pas compte explicitement des interactions entre pixels
dans la décision finale, il peut produire une image moins cohérente globalement, avec un
effet « flou » ou bruité sur certaines zones.

6.2.4 Application de ’estimateur MPM

Pour simuler un estimateur MPM, il nous faut tout d’abord générer une distribution
de Gibbs. Chaque configuration représente un état possible du champ aléatoire, avec la
valeur des pixels suivant la distribution de Gibbs. Voici un exemple de cette distribution
avec les configurations z(V, 23, £
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FIGURE 19 — Représentation de gauche a droite des configurations =M, 2 2 issues

d’un échantillon de Gibbs

Maintenant, nous nous intéressons au pixel soy en haut a gauche. Les valeurs du pixel
Soo dans ces configurations sont :

=
=
=0

Nous devons maintenant déterminer la fréquence de chaque état du pixel sgg dans les
configurations (1), () z3) .

— Fréquence(1) = 2 (car 1 apparait deux fois).
— Fréquence(0) = 1 (car 0 apparait une fois).

L’estimateur MPM choisit 1’état qui a la fréquence la plus élevée. Dans ce cas, ’état
1 apparait le plus souvent, donc :

Tarpa(S00) = arg max {Fréquence(1), Fréquence(0)} = argmax{2,1} =1

Ainsi, le pixel en haut a gauche apparait blanc dans 'image finale générée par notre
estimateur. Ce processus est appliqué de maniére similaire a chaque pixel, ce qui aboutit
a une image d’un carré nettoyée du bruit.

FIGURE 20 — Image restaurée par ’estimateur MPM

6.3 Estimateur TPM pour la restauration d’images

6.3.1 Définition de ’estimateur TPM

L’estimateur TPM (Thresholded Posterior Mean) est basé sur 'espérance condition-
nelle de chaque pixel X, connaissant I'image observée y. Contrairement aux estimateurs
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MAP et MPM qui choisissent un état précis, I'estimateur TPM calcule une moyenne
pondérée des valeurs possibles :

Trpm(s) =E[X, | Y =y

Lorsque les états sont discrets (par exemple {0,1} ou un nombre fini de classes), on
applique souvent un seuillage (ou un arrondi) pour obtenir une image utilisable :

6.3.2 Meéthode de calcul

Comme pour l'estimateur MPM, cette espérance est difficile & calculer directement.

On 'approche par une moyenne empirique sur des échantillons obtenus via un algorithme
de Monte Carlo (Gibbs ou Metropolis) :

N
1
E[X,|Y =y~ Nzxg@
k=1
Le seuillage final permet de transformer cette estimation continue en une image discréte
(ou binaire), si nécessaire.

6.3.3 Intérét de 'estimateur TPM

L’estimateur TPM est le plus adapté lorsque le critére d’évaluation est 'erreur qua-
dratique moyenne. Il posséde les qualités suivantes :

— 11 lisse naturellement 'image : les zones bruitées sont moyennées, ce qui atténue le
bruit aléatoire.

— 1l est bien adapté aux images a niveaux de gris et aux problémes ou les transitions
douces sont préférées.

— 1l est facile a calculer une fois les échantillons générés.

En revanche, ce lissage peut étre un inconvénient dans des contextes ot les discontinuités
(contours nets) sont importantes, comme en segmentation. L’estimateur TPM tend alors
a produire des images floues ou intermédiaires, notamment lorsque les classes sont mal
séparées.

6.3.4 Application de I’estimateur TPM

Comme pour MPM, pour simuler un estimateur TPM, il nous faut générer un échan-
tillon de configurations a partir de la distribution a posteriori via un algorithme de Monte-
Carlo, comme Gibbs ou Metropolis. Mais cette foi-ci, les pixels sont estimés en calculant
la moyenne de leurs valeurs dans toutes les configurations échantillonnées.

Prenons 'exemple du pixel sgg en haut a gauche, dont les valeurs dans les configura-
tions (M, 2@, 24 sont :
(1 _

— ryy =1
=0
=
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Nous allons maintenant calculer I’espérance de sq :

2

Cette moyenne nous donne une estimation continue du pixel. Cependant, pour générer
une image binaire, nous appliquons un seuil pour obtenir une valeur discréte, par exemple :

E[ X | Y =yl =

Wl

. 2
xTPM(SOO) = \‘g + 05J =1
Ainsi, pour le pixel sqg, 'estimateur TPM choisit la valeur 1. Ce processus est répété

pour chaque pixel de I'image. Dans le cas de face, et bien souvent on obtient des résultats
similaires a ceux obtenus avec un estimateur MPM.

6.4 Pré-traitement de 'image

Avant d’appliquer les différents estimateurs & des images, nous avons con¢u une fonc-
tion qui transforme 'image en niveaux de gris en un espace d’états discrets. Chaque pixel
de I'image peut prendre une valeur parmi un ensemble fini d’états \;, ot Card(E) repré-
sente le nombre d’états possibles. Pour une image en noir et blanc, il y a généralement 256
nuances de gris possibles (sur 8 bits), bien que I’ceil humain ne soit capable d’en distin-
guer qu’environ une trentaine. En fonction des besoins de notre expérience, nous pouvons
restreindre ce nombre d’états en réduisant la plage de valeurs possibles des pixels, pas-
sant ainsi de Card(E) = 256 a un Card(FE) plus petit, par exemple Card(E) = 16 ou
Card(E) = 2, selon les spécifications de I'expérience.

6.5 Conclusion sur les estimateurs

En comparant les résultats obtenus avec les différents estimateurs, on observe qu’ils
sont plus ou moins équivalents. Mais dés qu’on a des images composées de plusieurs
éléments, 'estimateur TPM & tendance a générer des images floues. Cela est di au fait
que l'on utilise ici la moyenne empirique sur les échantillons.

Les estimateurs MAP, MPM et TPM correspondent a des stratégies différentes :
— MAP : cohérence globale, sensible a I'initialisation, bon compromis biais/variance.
— MPM : décisions locales fiables, robustes, mais sans cohérence globale.

— TPM : lissage efficace et rapide, mais perte possible de détails structurants.
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Image originale Image bruitée

i
" . ER = .
) H

FIGURE 21 — Illustration d’une configuration comparant différentes simulations selon le
modeéle d’Tsing avec et sans recuit, bruit : (p = 0.3), nombre d’itérations : (iter = 10°) et

nombre d’états : (nbetats = 3)
MAP MPM

FIGURE 22 — Illustration d’une configuration comparant différents estimateurs selon le
modele d’Ising, bruit : (p = 0.2), nombre d’itérations : (iter = 20°) et nombre d’états :
(nb.tats = 64)

Image originale Image bruitée

Image originale

Image bruitée

FIGURE 23 — Illustration d’une configuration comparant différents estimateurs selon le
modele d’Ising, bruit : (p = 0.1), nombre d’itérations : (iter = 10°) et nombre d’états :
(nbetats = 16)

Ici, on peut dire que les modéles utilisés ne sont pas suffisants. Chercher d’autres papier
qui font de I'apprentissages sur les images médicales

7 Conclusion générale
APPLICATION : FAIRE UNE ETUDE DE CAS

APPLICATION SUR LES COULEURS RGB (256*3) VARIATIONS POUR CHA-
CUN DES TROIS CANAUX ON ARRIVE A UN CERTAIN NIVEAU DE R,G ET B /
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FAIRE DU POTTS SUR LES COULEURS / COMMENT SELECTIONNER LES COU-
LEURS? SINON FAIRE SUR NIVEAUX DE GRIS? PRENDRE UNE TRENTAINE

COMPARAISON DES METHODES

LIMITES DES METHODES

SCORE D’ERREUR : CRITERE D’EVALUATION OBJECTIF AFIN DE COMPA-
RER TOUS LES MODELES CALCULER LES PROPORTIONS, FAIRE LA MOYENNE
DES PROPORTIONS ET ESPERANCE=SCORE (UN PEU COMME UNE LOI DE
BERNOULLI MAIS PAS TOUT A FAIT) FORECEMENT D’ESPERANCE FINIE CAR
BORNEE

AJOUTER LES SCORES POUR LES IMAGES
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